

Chiral Vinylphosphonate and Phosphonate Analogues of the Immunosuppressive Agent FTY720

Xuequan Lu,† Chaode Sun,† William J. Valentine,‡ Shuyu $E,^{\frac{4}{3}}$ Jianxiong Liu,^{\ddagger} Gabor Tigyi, \ddagger and Robert Bittman†,*

*Department of Chemistry and Biochemistry, Queens College of The City Uni*V*ersity of New York, Flushing, New York* 11367-1597, and Department of Physiology, University of *Tennessee Health Science Center, Memphis, Tennessee 38163*

robert.bittman@qc.cuny.edu

*Recei*V*ed January 7, 2009*

activity; (S) -5 is not a $S1P_1$ agonist (R) -4, (R) -5: $X = CH₂OH$, $Y = NH₂$ Both lack anti-apoptotic activity but are S1P₁ agonists

The first enantioselective synthesis of chiral isosteric phosphonate analogues of FTY720 is described. One of these analogues, FTY720-(*E*)-vinylphosphonate (*S*)-**5**, but not its *R* enantiomer, elicited a potent antiapoptotic effect in intestinal epithelial cells, suggesting that it exerts its action via the enantioselective activation of a receptor. (*S*)-**5** failed to activate the sphingosine 1-phosphate type 1 $(S1P_1)$ receptor.

FTY720 (2-amino-[2-(4-*n*-octylphenyl)ethyl]-1,3-propanediol, Fingolimod, **1**, Chart 1) is a synthetic analogue of the chiral sphingolipid myriocin (2) .¹ As an analogue of sphingosine, FTY720 is phosphorylated in vivo by sphingosine kinases, affording (*S*)-FTY720-phosphate (**3**), which activates four of the five known sphingosine 1-phosphate (S1P, **2a**) G proteincoupled receptors.²

Internalization and subsequent polyubiquitination of the S1P receptors leads to their proteasomal degradation and renders the cells unresponsive to S1P; therefore, lymphocytes are not capable of recirculation to peripheral inflammatory tissues.³ Thus, FTY720 has therapeutic potential and, in fact, is the first S1P receptor modulator that has entered the stage of a phase-III clinical study.4

Several syntheses of **1**⁵ and of phosphate **3** have been accomplished.6 In contrast to phosphates such as **3**, phosphonate analogues are resistant to the action of lipid phosphate phosphatases and may offer improved cellular stability. A racemic mixture of the nonhydrolyzable phosphonate analogue of FTY720 (4) was reported in which the $C-O-P$ bond is replaced with a $C-C-P$ bond;^{2b} *rac*-4 was found to be a high-affinity agonist of the S1P-type 1 receptor $(S1P_1)$, with a similar potency as (*S*)-**3**. ⁷ We report here the first asymmetric syntheses of the chiral phosphonate analogues of FTY720, (*R*)-**4** and (*S*)-**4**. Oxazoline intermediate (*S*)*-***14** (Scheme 1), prepared by a modification of our previous route,^{6c} was further elaborated to give the corresponding (*E*)-vinylphosphonate analogue (*S*)-**5**. We have included a preliminary pharmacological characterization of the effects of these analogues on the nontransformed rat intestinal epithelial cell line IEC-6. This study revealed that (*S*)- **5**, but not its (*R*) enantiomer, exerts a potent antiapoptotic effect in a camptothecin (CPT)-induced apoptosis model.⁸ Unlike phosphate (*S*)-3, (*S*)-5 did not activate the $S1P_1$ receptor of the Endothelial Differentiation Gene (EDG) family of G proteincoupled receptors, making it a novel enantioselective probe activating a cytoprotective mechanism against apoptosis induced by DNA damage.

Wittig reaction of 4-bromobenzaldehyde with the ylide of *n*-heptyltriphenylphosphonium bromide gave arylalkene **6** as an *E,Z* (1:3) mixture (Scheme 1). Sonogashira coupling between **6** and 4-(phenylmethoxy)-1-butyne delivered enyne **7** as a 1:3 *E*:*Z* mixture in 92% yield. Alcohol **8** was obtained on reduction of the unsaturated bonds and hydrogenolysis of the *O*-benzyl group in the presence of Pearlman's catalyst. After Swern oxidation of **8** provided aldehyde **9**, use of a Mannich reagent,

CUNY.

[‡] University of Tennessee Health Science Center.

⁽¹⁾ For recent reviews, see: (a) Zhang, Z.; Schluesener, H. J. *Mini Re*V*. Med. Chem.* **2007**, *7*, 845–850. (b) Martini, S.; Peters, H.; Bohler, T.; Budde, K. *Expert Opin. In*V*estig. Drugs* **²⁰⁰⁷**, *¹⁶*, 505–518. (c) Kihara, A.; Igarashi, Y. *Biochim. Biophys. Acta* **2008**, *1781*, 496–502.

^{(2) (}a) Brinkmann, V.; Davis, M. D.; Heise, C. E.; Albert, R.; Cottens, S.; Hof, R.; Bruns, C.; Prieschl, E.; Baumruker, T.; Hiestand, P.; Foster, C. A.; Zollinger, M.; Lynch, K. R. *J. Biol. Chem.* **2002**, *277*, 21453–21457. (b) Mandala, S.; Hajdu, R.; Bergstrom, J.; Quackenbush, E.; Xie, J.; Milligan, J.; Thornton, R.; Shei, G. J.; Card, D.; Keohane, C.; Rosenbach, M.; Hale, J.; Lynch, C. L.; Rupprecht, K.; Parsons, W.; Rosen, H. *Science* **2002**, *296*, 346–349.

^{(3) (}a) Gonzalez-Cabrera, P. J.; Hla, T.; Rosen, H. *J. Biol. Chem.* **2007**, *282*, 7254–7264. (b) Oo, M. L.; Thangada, S.; Wu, M. T.; Liu, C. H.; Macdonald, T. L.; Lynch, K. R.; Lin, C. Y.; Hla, T. *J. Biol. Chem.* **2007**, *282*, 9082–9089.

⁽⁴⁾ FTY720 appears to be efficacious against autoimmune diseases such as multiple sclerosis: (a) Kappos, L.; Antel, J.; Comi, G.; Montalban, X.; O'Connor, P.; Polman, C. H.; Haas, T.; Korn, A. A.; Karlsson, G.; Radue, E. W. *N. Engl. J. Med.* **2006**, *355*, 1124–1140. (b) Baumruker, T.; Billich, A.; Brinkmann, V. *Expert Opin. In*V*estig. Drugs* **²⁰⁰⁷**, *¹⁶*, 283–289.

⁽⁵⁾ See: Matsumoto, N.; Hirose, R.; Sasaki, S.; Fujita, T. *Chem. Pharm. Bull.* **2008**, *56*, 595–597, and references cited therein.

^{(6) (}a) Hinterding, K.; Cottens, S.; Albert, R.; Zécri, F.; Buehlmayer, P. B.; Spanka, C.; Brinkmann, V.; Nussbaumer, P.; Ettmayer, P.; Hoegenauer, K.; Gray, N.; Pan, S. F. *Synthesis* **2003**, 1667–1670. (b) Hale, J. J.; Yan, L.; Neway, W. E.; Hajdu, R.; Bergstrom, J. D.; Milligan, J. A.; Shei, G. J.; Chrebet, G. L.; Thornton, R. A.; Card, D.; Rosenbach, M.; Rosen, H.; Mandala, S. *Bioorg. Med. Chem.* **2004**, *12*, 4803–4807. (c) Lu, X.; Bittman, R. *Tetrahedron Lett.* **2006**, *47*, 825– 827. (d) Albert, R.; Hinterding, K.; Brinkmann, V.; Guerini, D.; Müller-Hartwieg, C.; Knecht, H.; Simeon, C.; Streiff, M.; Wagner, T.; Welzenbach, K.; Zécri, F.; Zollinger, M.; Cooke, N.; Francotte, E. *J. Med. Chem.* **2005**, *48*, 5373–5377. (e) Takeda, S.; Chino, M.; Kiuchi, M.; Adachi, K. *Tetrahedron Lett.* **2005**, *46*, 5169–5172.

^{(7) (}a) Forrest, M.; Sun, S. Y.; Hajdu, R.; Bergstrom, J.; Card, D.; Doherty, G.; Hale, J.; Keohane, C.; Meyers, C.; Milligan, J.; Mills, S.; Nomura, N.; Rosen, H.; Rosenbach, M.; Shei, G. J.; Singer, I. I.; Tian, M.; West, S.; White, V.; Xie, J.; Proia, R. L.; Mandala, S. *J. Pharmacol. Exp. Ther.* **2004**, *309*, 758–768. For the activity of FTY720 α -hydroxyphosphonates, see: (b) Hale, J. J.; Neway, W.; Mills, S. G.; Hajdu, R.; Keohane, C.; Rosenbach, M.; Milligan, J.; Shei, G.-J.; Chrebet, G.; Bergstrom, J.; Card, D.; Koo, G. C.; Koprak, S. L.; Jackson, J. J.; Rosen, H.; Mandala, S. *Bioorg. Med. Chem. Lett.* **2004**, *14*, 3351–3355. (8) For a recent review of CPT and its derivatives, see: Verma, R. P.; Hansch,

C. *Chem. Re*V*.* **²⁰⁰⁹**, *¹⁰⁹*, 213–235.

SCHEME 1. Synthesis of (*S***)-14 from 4-Bromobenzaldehyde**

Eschenmoser's salt, 9 afforded α -methylene aldehyde **10**. Reduction of 10 with N aBH₄ in the presence of CeCl₃ (to suppress conjugate reduction) gave allyl alcohol 11.¹⁰ CeCl₃, which is a mild Lewis acid, is not required, since CsCl also provided **11** as the only product. Asymmetric Sharpless epoxidation¹¹ of 11 with cumene hydroperoxide (CHP) in the presence of L-(+)-DIPT, Ti(OPr-*i*)₄, and molecular sieves gave epoxide (*S*)-**12**.¹² The synthesis of (S) -12 was accomplished in 7 steps from *p*-bromobenzaldehyde and in 46% overall yield. Reaction of alcohol (*S*)-**12** with trichloroacetonitrile in the presence of DBU gave 2,3-epoxy-1-trichloroacetimidate (*R*)-**13**. The tetrasubstituted carbon in oxazoline **14** was set up bearing the desired nitrogen substituent by opening of epoxide (*R*)-**13** with catalytic Et₂AlCl,¹³ affording (*S*)-14 in 74% yield for the two steps.

Swern oxidation of oxazoline (*S*)-**14** gave oxazoline aldehyde **15** (Scheme 2), which on Horner-Wadsworth-Emmons reaction with tetramethyl methylenediphosphonate afforded ester (*S*)- **16** in 87% yield and with an *E*/*Z* ratio of ∼10:1. Simultaneous demethylation and release of the hydroxy and amino groups by treatment with trimethylsilyl bromide (TMSBr) provided (*S*)- **5**, but the yield was low. Therefore, the hydroxy and amino groups were first released by treatment with 1 M HCl. After the amine hydrochloride was neutralized (saturated aq $Na₂CO₃$), amino alcohol **17** was converted to (*S*)-**5** with TMSBr followed by 95% methanol; 84% yield for the two steps. Reduction of (*S*)-**5** using Pearlman's catalyst gave (*S*)-**4**.

Asymmetric epoxidation of **11** with D-(-)-DIPT gave epoxide (*R*)-**12**, which was converted via (*R*)-**14** to (*R*)-**5** in six steps (K)-12, which was converted via (K) -14 to (K) -5 in six steps
(Scheme 3). Catalytic hydrogenation of (R) -5 afforded (R) -4. Signature of (R) -1 and the step of the selling surface of the survival of many cell the second

CHART 1. Structures of FTY720 (1); Myriocin (2); S1P (2a); and FTY720 Phosphate, Phosphonate, and (*E***)-Vinylphosphonate Analogues (3**-**5)**

Sphingosine 1-phosphate (2a) $R_2 = C_{13}H_{27} - n$

FTY720-phosphate (S)-3

FTY720-phosphonate (R)-4 FTY720-phosphonate (S)-4

(*S*)-**3** protect oligodendrocyte progenitor cells from apoptotic cell death in response to growth factor withdrawal, and (*S*)-**3** was also shown to be cytoprotective in response to pro-apoptotic (9) Schreiber, J.; Maag, H.; Hashimoto, N.; Eschenmoser, A. *Angew. Chem.,*

Int. Ed. Engl. **1971**, *10*, 330–331.

⁽¹⁰⁾ Luche, J. L. *J. Am. Chem. Soc.* **1978**, *100*, 2226–2227.

⁽¹¹⁾ Katsuki, T.; Martin, V. S. *Org. React.* **1995**, *48*, 1–299.

⁽¹²⁾ Sharpless epoxidation of an analogue of **11** with L-diethyl tartrate gave the corresponding (*S*)-2,3-epoxy alcohol in 95% ee: Li, X.; Borhan, B. *J. Am. Chem. Soc.* **2008**, *130*, 16126–16127 (Table 1, entry 20).

⁽¹³⁾ Hatakeyama, S.; Matsumoto, H.; Fukuyama, H.; Mukugi, Y.; Irie, H. *J. Org. Chem.* **1997**, *62*, 2275–2279.

⁽¹⁴⁾ Cuvillier, O.; Pirianov, G.; Kleuser, B.; Vanek, P. G.; Coso, O. A.; Gutkind, S.; Spiegel, S. *Nature* **1996**, *381*, 800–803.

^{(15) (}a) Saini, H. S.; Coelho, R. P.; Goparaju, S. K.; Jolly, P. S.; Maceyka, M.; Spiegel, S.; Sato-Bigbee, C. *J. Neurochem.* **2005**, *95*, 1298–1310. (b) Coelho, R. P.; Payne, S. G.; Bittman, R.; Spiegel, S.; Sato-Bigbee, C. *J. Pharmacol. Exp. Ther.* **2007**, *323*, 626–635.

IOC Note

SCHEME 3. Outline of the Synthesis of (*R*)-5 and (*R*)-4

11 $\frac{D\cdot(\cdot)\cdot DIPT}{T\text{[(OPT\text{-}i)]_4}}$ (*R*)-12 $\xrightarrow{\text{6 steps}}$ (*R*)-5 $\frac{H_2}{Pd(OH)_2}$ (*R*)-4

MeOH

cytokines and microglial activation.15 The ability of **2a**, (*S*)-**3**, and phosphonate analogues **4** and **5** to protect IEC-6 cells from apoptotic cell death in response to the topoisomerase inhibitor CPT was assessed by DNA fragmentation. Pretreatment with **2a**, (*S*)-**3**, (*R*)-**4**, or (*R*)-**5** did not result in a significant reduction in DNA fragmentation in response to a 4-h treatment with 20 *µ*M CPT. However, we found that the cytoprotective effect was enantioselective, since pretreatment with $1 \mu M$ of (*S*)-4 or (*S*)-5 showed a significant reduction (21 and 50%, respectively) in DNA fragmentation in response to CPT.

In a preliminary study of the activity of the FTY720 phosphonate analogues on S1P receptors, we performed Ca^{2+} mobilization assays with HTC4 cells that were stably transfected with $S1P_1$. As shown in Figure 1, the $S1P_1$ transfectants were activated by (*S*)-**3** to 76% of the maximal S1P-induced activation, and displayed a similar potency as S1P (13 \pm 2 nM for S1P vs 9 ± 1 nM for (*S*)-3). (*R*)-5 and (*R*)-4 both showed a modest activity against $S1P_1$ with E_{max} values that ranged from 73 to 93% of the maximal S1P-induced responses, and EC_{50} values that were increased by ∼2- to 3-fold. (*S*)-**4** activated S1P1 to 36% of the maximal S1P-induced response, and the EC_{50} value was increased by \sim 5-fold to 75 \pm 21 nM. Since (*S*)-**5** did not elicit a Ca^{2+} response from cells transfected with the $S1P₁$ receptor, we conclude that the potent cytoprotective effect of (S) -5 is not mediated by $S1P_1$.

In conclusion, we have described the synthesis of the enantiomers of FTY720 phosphonate analogues **4** and **5**. (*S*)-**4** and (*S*)-5, but not **2a** or (*S*)-3, all at 1 μ M, protected IEC-6 cells from apoptosis. The extent of CPT-induced DNA fragmentation was reduced by 50% and 21% in the presence of 1 μ M of (*S*)-**5** and (*S*)-**4**, respectively. The potent cytoprotective

FIGURE 1. Ca^{2+} mobilization dose-response relationships for S1P (**2a**), (*S*)-**3**, and FTY720 analogues **4** and **5** in HTC4 cells expressing the $S1P_1$ receptor.

activity of (S) -5 is not mediated by $S1P_1$. Experiments are underway to characterize the cellular effects of these analogues.

Experimental Section

(2*S***)-2-(2**′**-(Trichloromethyl)-4**′**,5**′**-dihydrooxazol-5-yl)-4-(4**′′**-octylphenyl)-butan-1-ol** $[(S)-(+)$ -14]. To a solution of 435 mg (1.5) mmol) of epoxy alcohol (*S*)-12 in 25 mL of CH₂Cl₂ at 0 $^{\circ}$ C were added Cl3CCN (0.17 mL, 1.65 mmol) and DBU (0.023 mL, 0.15 mmol). After being stirred at 0° C for 1.5 h, the reaction mixture was diluted with $Et₂O$ (20 mL) and water (20 mL). The organic layer was separated, washed with brine (20 mL), dried (MgSO4), and concentrated. The residue was purified by chromatography (hexane/EtOAc 20:1) to give 565 mg (87%) of (*R*)-**13**; R*^f* 0.58 (EtOAc/hexane 1:3). To an ice-cold solution of 565 mg (1.31 mmol) of (R) -13 in 20 mL of CH_2Cl_2 was added Et_2AlCl $(0.75$ mL, 0.75 mmol, a 1.0 M solution in hexane). After the mixture was stirred at 0 °C for 20 min and then at rt for 3 h, the reaction was quenched with saturated aq NaHCO₃ solution (20 mL) . The organic layer was washed with brine (20 mL) , dried $(MgSO₄)$, and concentrated. The residue was purified by chromatography (hexane/EtOAc 3:1) to give 480 mg (85%) of (*S*)-**¹⁴** as a white solid; mp 56.7-57.5 ${}^{\circ}C$; *R_f* 0.29 (EtOAc/hexane 1:3); [α]²⁵_D +24.9 (*c* 1.60, CHCl₃); ¹H
NMR (CDCl₂) δ 0.88 (t 3H *I* = 6.8 Hz) 1.26–1.38 (m 10H) NMR (CDCl₃) δ 0.88 (t, 3H, $J = 6.8$ Hz), 1.26-1.38 (m, 10H), 1.58 (m, 2H), 1.84 (m, 1H), 2.01 (m, 1H), 2.57 (m, 4H), 3.30 (s, 1H), 3.55 (dd, 1H, $J = 11.6$, 8.4 Hz), 3.85 (dd, 1H, $J = 11.6$, 4.8 Hz), 4.45 (d, 1H, $J = 8.4$ Hz), 4.65 (d, 1H, $J = 8.4$ Hz), 7.08 (s, 4H); 13C NMR (CDCl3) 14.2, 22.7, 29.3, 29.4, 29.5, 29.8, 31.6, 32.0, 35.6, 37.6, 66.8, 76.0, 86.5, 128.2, 128.9, 138.2, 140.8, 163.2. HRMS (MNa⁺) m/z calcd for C₂₁H₃₀Cl₃NO₂Na 456.1234, found 456.1241. Data for (*R*)-(**14**): [α]²⁵_D -25.0 (*c* 2.75, CHCl₃); ¹H NMR
(CDCl₂) δ 0 88 (t 3H *I* = 6 8 Hz) 1 26–1 38 (m 10H) 1 58 (m $(CDCl₃)$ δ 0.88 (t, 3H, $J = 6.8$ Hz), 1.26-1.38 (m, 10H), 1.58 (m, 2H), 1.85 (m, 1H), 2.01 (m, 1H), 2.14 (s, 1H), 2.60 (m, 4H), 3.54 (d, 1H, $J = 11.6$ Hz), 3.83 (d, 1H, $J = 11.6$ Hz), 4.45 (d, 1H, $J =$ 8.4 Hz), 4.63 (d, 1H, $J = 8.4$ Hz), 7.09 (s, 4H); ¹³C NMR (CDCl₃) *δ* 14.1, 22.7, 29.0, 29.3, 29.5, 29.7, 31.6, 31.9, 35.5, 37.5, 67.0, 75.9, 86.4, 128.1, 128.6, 138.1, 140.9, 163.3.

(3*S***)-3-(Amino)-3-(hydroxymethyl)-5-(4**′**-octylphenyl)-pent- (1***E***)-enyl-phosphonic acid [(***S***)-(+)-5]. To a solution of 269 mg** (0.50 mmol) of (*S*)-**16** in 10 mL of THF at rt was added 3 mL of 1 M HCl. After the reaction mixture was stirred overnight, the solvent was evaporated and the residue was extracted with a mixture of CHCl₃ and saturated $Na₂CO₃$ aq solution. The organic phase was dried (MgSO₄) and concentrated. The residue was purified by chromatography (CHCl3/MeOH/NH4OH 135:25:4) to give 185 mg (90%) of (*S*)-**¹⁷** as a pale yellow oil after filtration through a Teflon syringe filter. *R_f* 0.37 (CHCl₃/MeOH/NH₄OH 135:25:4); [α]²⁵_D + 18.8 (c 1.52 CHCl₂)^{, 1}H NMR (CDCl₂) δ 0.88 (t 3H $I = 6.4$ +18.8 (*c* 1.52, CHCl₃); ¹H NMR (CDCl₃) δ 0.88 (t, 3H, *J* = 6.4
Hz) 1.26–1.29 (m, 10H) 1.58 (m, 2H) 1.48–1.86 (m, 5H) 2.49– Hz), 1.26-1.29 (m, 10H), 1.58 (m, 2H), 1.48-1.86 (m, 5H), 2.49- 2.58 (m, 4H), 3.50 (dd, $J = 21.2$, 10.6 Hz), 3.73 (s, 3H), 3.75 (s,

3H), 5.93 (dd, 1H, $J = 20.0$, 17.6 Hz), 6.85 (dd, 1H, $J = 22.8$, 17.6 Hz), 7.05-7.10 (m, 4H); 13C NMR (CDCl3) *^δ* 14.1, 22.7, 29.3, 29.36, 29.44, 29.5, 31.6, 31.9, 35.5, 39.4, 52.4 (d, $J = 6.0$ Hz), 59.4 (d, *J* = 19.1 Hz), 69.2, 115.0 (d, *J* = 188.1 Hz), 128.1, 128.3, 128.6, 138.6, 140.8, 157.9 (d, $J = 6.0$ Hz); ³¹P NMR (CDCl₃) δ 21.8. Data for (R) - (17) : $[\alpha]_{0.5}^{25}$ -17.1 (c 1.51, CHCl₃); ¹H NMR
(CDCl₂) δ 0.88 (t 3H $I = 6.4$ Hz) 1.26–1.29 (m 10H) 1.58 (m (CDCl₃) *δ* 0.88 (t, 3H, *J* = 6.4 Hz), 1.26-1.29 (m, 10H), 1.58 (m, 2H), 1.79-1.82 (m, 5H), 2.53-2.57 (m, 4H), 3.50 (dd, $J = 21.2$, 10.6 Hz), 3.73 (s, 3H), 3.75 (s, 3H), 5.93 (dd, 1H, $J = 20.0, 17.6$ Hz), 6.85 (dd, 1H, $J = 22.8$, 17.6 Hz), 7.07-7.10 (m, 4H); ¹³C NMR (CDCl₃) δ 14.1, 22.7, 29.3, 29.4, 29.42, 29.5, 29.7, 31.6, 31.9, 35.5, 39.4, 52.4 (d, $J = 2.0$ Hz), 52.5 (d, $J = 2.0$ Hz), 59.4 (d, $J = 19.1$ Hz), 69.1, 115.0 (d, $J = 188.1$ Hz), 128.1, 128.4, 128.5, 138.7, 140.7, 157.9 (d, *J* = 6.0 Hz); ³¹P NMR (CDCl₃) *δ* 21.8. To a solution of (S) -17 in 10 mL of dry CH_2Cl_2 at rt was added 0.66 mL (5.0 mmol) of TMSBr. After the reaction mixture was stirred for 4 h, the solvent was removed, and the residue was dried and dissolved in 2 mL of 95% MeOH with stirring for 1 h. Removal of the solvent afforded 224 mg (93%) of (*S*)-**5** as a white solid: mp 159.2-161.1 °C; R_f 0.14 (CHCl₃/MeOH/H₂O/AcOH 65: $25:4:1$); [α]²⁵_D +12.2 (*c* 1.04, CHCl₃/MeOH 9:1); ¹H NMR (CDCl₃/
CD₂OD 9:1) δ 0.87 (t 3H *I* = 6.8 Hz) 1.26 (br s 10H) 1.51 (s CD₃OD 9:1) δ 0.87 (t, 3H, $J = 6.8$ Hz), 1.26 (br s, 10H), 1.51 (s, 2H), 1.95-2.10 (m, 2H), 2.47 (t, 2H, $J = 7.6$ Hz), 2.55-2.68 (m, 2H), 3.83 (br s, 2H), 4.08 (br s, 4H), 6.30 (m, 1H), 6.60 (m, 1H), 6.99 (d, 2H, $J = 8.0$ Hz), 7.07 (d, 2H, $J = 8.0$ Hz); ¹³C NMR (CDCl3/CD3OD 9:1) *δ* 14.1, 22.9, 29.1, 29.5, 29.6, 31.8, 32.3, 35.8, 36.5, 62.2 (d, *J* = 20.1 Hz), 64.4, 123.3, 125.2, 128.3, 128.9, 137.6, 141.4, 144.2; 31P NMR (CDCl3/CD3OD 9:1) *δ* 13.1. HRMS (MNa+) m/z calcd for $C_{20}H_{34}NO_4$ PNa 406.2118, found 406.2106.

Data for (R) **-5.** $[\alpha]^{25}$ -13.0 (*c* 1.05, CHCl₃/MeOH 9:1); ¹H
AR (CDCL/CD-OD 9:1) δ 0.88 (*t* 3H $I = 6.8$ Hz) 1.26-1.27 NMR (CDCl₃/CD₃OD 9:1) *δ* 0.88 (t, 3H, *J* = 6.8 Hz), 1.26-1.27 (m, 10H), 1.52-1.55 (m, 2H), 2.01-2.11 (m, 2H), 2.52 (t, 2H, *^J* $= 7.6$ Hz), $2.55 - 2.68$ (m, 2H), 3.26 (br s, 4H), 3.82 (br s, 2H), 6.30 (m, 1H), 6.59 (dd, 1H, $J = 23.2$, 18.0 Hz), 7.03 (d, 2H, $J =$ 8.0 Hz), 7.08 (d, 2H, $J = 8.0$ Hz), 8.34 (br s, 1H); ¹³C NMR (CDCl₃/ CD3OD 9:1) *δ* 14.2, 22.9, 29.0, 29.5, 29.6, 29.7, 29.9, 31.8, 32.3, 35.8, 36.5, 62.2 (d, *J* = 20.1 Hz), 64.4, 123.4, 125.2, 128.3, 128.9, 137.6, 141.4, 144.2; 31P NMR (CDCl3/CD3OD 9:1) *δ* 13.1.

Acknowledgment. This work was supported by NIH Grants HL083187 and CA92160.

Supporting Information Available: Experimental details for the synthesis of compounds **⁶**-**8**, **¹⁰**, **¹¹**, **¹²**, **¹⁶**, and **⁴**, and NMR spectra of all new compounds. This material is available free of charge via the Internet at http://pubs.acs.org.

JO900023U